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ALGORITHMS FOR DETERMINATION OF T-MODULE
STRUCTURES ON SOME EXTENSION GROUPS

FILIP GŁOCH1, DAWID E. KĘDZIERSKI 1, AND PIOTR KRASOŃ 1,∗

Abstract. In their recent work the second and the third authors ex-
tended the methods of M.A. Papanikolas and N. Ramachandran and
determined the t-module structure on Ext1(Φ,Ψ) where Φ and Ψ were
Anderson t-modules over A = Fq[t] of some specific types. This approach
involved the concept of biderivation and certain reduction algorithm. In
this paper we generalize these results and present a complete algorithm
for computation of t-module structure on Ext1(Φ,Ψ) for t−modules Φ
and Ψ such that degτ Φ > degτ Ψ. The last condition is not sufficient for
our algorithm to be executable. We show that it can be applied when the
matrix at the biggest power of τ in Φt is invertible. We also introduce
a notion of τ -composition series which we find suitable for the additive
category of t-modules and show that under certain assumptions on the
composition series of Φ and Ψ our algorithm is also executable.

1. Introduction

Let A = Fq[t] be a polynomial ring over a finite field Fq with q-elements

and let k = Fq(t) be the quotient field of A. Then k can be viewed as the

function field of the curve P1/Fq and A as the ring of functions regular

outside ∞. Let v∞ : k → R ∪ {∞} be the normalized valuation associated

to 1
t

(i.e. v∞(1
t
) = 1). Let K be a completion of k with respect to v∞ and

let K be its fixed algebraic closure. It turns out that K is neither complete

nor locally compact. Denote also by v∞ the extension of v∞ to K. Let C∞

be the completion of K with respect to the metric induced by v∞.

One of the major developments in the theory of curves over finite fields

was the work of L. Carlitz [3] where a remarkable exponential function

eC : C∞ → C∞ was defined. This function is an analytic function on the

characteristic p-space C∞, and besides the properties analogous to the usual

exponential function satisfies the functional equation eC(az) = Ca(eC(z))
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where a ∈ Fq[t] and Ca is an additive polynomial. One has Cab(z) =

Ca(Cb(z)) = Cb(Ca(z)) and Ca(z1 + z2) = Ca(z1) + Ca(z2). The correspon-

dence a→ Ca(z) is called the Carlitz module. D. Hayes [9] proved that the

division values of eC(z) generate abelian extensions of k analogous to the

cyclotomic extensions defined by the division points of e2πiz. In [4] V.G.

Drinfeld extended the theory of the Carlitz (rank 1) exponentials to arbi-

trary rank d. Such exponentials give rise to objects which are now called

Drinfeld modules. The theory of moduli spaces of shtukas (which are gener-

alizations of Drinfeld modules) constructed by V.G. Drinfeld played a major

role in proving the version of Langlands correspondence for GLr of function

fields in finite characteristic [13],[14]. Additionally, D. Hayes [10] developed

explicitly a class field theory for function fields. Drinfeld modules and its

generalizations t−modules defined by G. Anderson [1] are objects of inten-

sive studies. For the remarkable results obtained in this area the reader is

advised to consult excellent sources e.g. [18], [8], [5], [2], [6], [16]. The cate-

gory of t−modules is an additive category. Basic structures of this category

such as Homτ -sets or extension groups deserve thorough investigation. In

[12] an algorithm for determination of an endomorphism ring of a Drinfeld

module was developed. In [17] a t−module structure for Ext1τ (φ, C), where

φ is a Drinfeld module of rank bigger than 1 and C is the Carlitz mod-

ule, was determined. The key idea relied on representation of the Fq-space

Ext1τ as the quotient of the space of biderivations modulo the subspace of

inner biderivations. Then the condition rkφ > rkC on a Drinfeld module

allowed the authors of [17] to construct a recursive algorithm for comput-

ing t−module structure on Ext1τ (φ, C). The application of essentially the

same algorithm allowed them to determine the structure of a t−module on

the space Ext1τ (C
⊗m, C⊗n) for n > m. In [11] the second and third author

generalized this algorithm and showed that for some specific t−modules Φ

and Ψ under the assumption degτΦ > degτΨ the spaces Ext1τ (Φ,Ψ) have

t−module structures. The content of this paper is the following: In section 2

we give basic definitions and facts concerning t−modules, their morphisms

etc. Then we describe Ext1τ as the quotient of the space of biderivations

modulo the subspace of inner biderivations. We quickly recall the six-term

Homτ −Extτ exact sequence existence of which was proved in [11]. We also

describe the duality functor as defined in [7] (cf. [11]).

In section 3 we present an algorithm, which we call t−reduction algo-

rithm, for computation of a t−module structure for Ext1τ (Φ,Ψ), where Φ,Ψ
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are t−modules, degτΦ > degτΨ. The t−reduction algorithm is a general-

ization of the methods of computation presented both in [17] and [11]. The

condition degτΦ > degτΨ is not sufficient for the t−reduction algorithm to

be executable therefore we introduce the notion of a t−module structure

coming from t−reduction. In section 4 we show that if degτΦ > degτΨ and

the matrix An at the highest power of τ in Φt is invertible then Ext1τ (Φ,Ψ)

has a t−module structure coming from t−reduction. We then present an

appropriate pseudo-code. In section 5 we introduce for t−modules some new

notions: we define τ -simplicity and τ -composition series. Then we show that

our algorithm is executable for Ext1τ (Φ,Ψ) where Φ and Ψ are given by com-

position series having Drinfeld modules as consecutive sub-quotients which

satisfy certain conditions on degrees i.e. in this case the t−module structure

on Ext1τ (Φ,Ψ) comes from t−reduction. Then we present a pseudo-code for

this situation. This essentially enlarges the class of t−modules for which

the structure of a t−module on Ext1τ (Φ,Ψ) can be effectively computed.

For theoretical purposes it might be also useful to have exact formulas.

This in general is a very tedious task. We give the exact formulas for the

case of Ext1τ (φ, ψ) for two Drinfeld modules with degτφ > degτψ. We also

derive some consequences from them which cannot be obtained directly from

the algorithm. Finally, in the appendix we give an implementation of our

pseudo-codes in Mathematica 13.2 and compute two examples.

2. Preliminaries

In this section we give basic definitions and properties concerning Drin-

feld modules and t−modules.

Let p be a rational prime and A = Fq[t] the polynomial ring over the

finite field with q = pm elements.

Definition 2.1. An A-field K is a fixed morphism ι : A→ K. The kernel

of ι is a prime ideal P of A called the characteristic. The characteristic of ι

is called finite if P 6= 0, or generic (zero) if P = 0.

Let Ga,K be the additive algebraic group overK. Then the endomorphism

ring End(Ga,K) is the skew polynomial ring K{τ}. The endomorphism τ is

the map u→ uq and therefore one has the commutation relation τu = uqτ

for u ∈ K.

Definition 2.2. A Drinfeld A-module is a homomorphism φ : A→ K{τ},

a→ φa , of Fq-algebras such that

1. D ◦ φ = ι,
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2. for some a ∈ A, φa 6= ι(a)τ 0,

where D(
∑i=ν

i=0 aiτ
i) = a0. The characteristic of a Drinfeld module is the

characteristic of ι.

There exists a generalization of the notion of a Drinfeld module called a

t−module. This was developed by G. Anderson in [1].

Definition 2.3. An m-dimensional t−module over K is an Fq -algebra

homomorphism

(2.1) Φ : Fq[t]→ Matm(K{τ})

such that Φ(t), as a polynomial in τ with coefficients in Matm(K) is of the

following form:

(2.2) Φ(t) = (θId +N)τ 0 +M1τ
1 + · · ·+Mrτ

r

where Im is the identity matrix and N is a nilpotent matrix. In general, a

t−module over K is an algebraic group E defined over K and isomorphic

over K to G
m
a together with a choice of Fq-linear endomorphism t : E → E

such that d(t−θ)nLie(E) = 0 for n sufficiently large. Notice that d(·) stands

here for the differential of an endomorphism of algebraic groups. The choice

of an isomorphism E ∼= Gm
a is equivalent to the choice of Φ.

Notice that a Drinfeld module may be viewed as a one dimensional

t−module.

Definition 2.4. Let Φ be a t−module defined over K as in (2.1) and

L be an algebraic extension of K. The Mordell-Weil group Φ(L) is the

additive group of Lm viewed as an A-module via evaluation of the matrix

Φa ∈ Matm(K{τ}), a ∈ A on Lm, where τ acts on L as the Frobenius

morphism x→ xq.

To make notation simpler for a non-negative integer n we denote xq
n

:=

x(n) to be the evaluation of the Frobenius twist τn on x ∈ K. Of course

x(0) = x.

Definition 2.5. Let Φ be a t−module. Then

(i) the rank of Φ is defined as the rank of the period lattice of Φ as a

dΦ(A)-module (cf. [2, Section t-modules]).

(ii) the degree degτ Φ of a t−module Φ is defined as degτ Φt.

Remark 2.6. Notice that for Drinfeld modules rkφ = degτ φ but for a gen-

eral t−module the rank of Φ is not always equal to degτ Φ (cf. [8, Example

5.9.9]).
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Definition 2.7. Let Φ and Ψ be two t−modules of dimension d and e,

respectively. A morphism f : Ψ −→ Φ of t−modules over K is a matrix

f ∈ Matd×e(K{τ}) such that

fΨ(t) = Φ(t)f.

Remark 2.8. Notice that the category of t−modules is an additive sub-

category of the abelian category of Fq[t]−modules. This subcategory is

not full (cf. [11, Example 10.2]). Therefore the Hom-set in the category

of t−modules will be denoted as Homτ i.e. Hom(Φ,Ψ) := Homτ (Φ,Ψ).

By a zero t−module we mean the t−module given by the map Fq[t]→ 0.

Let Ext1τ (Φ,Ψ) be the Baer group of extensions of t−modules i.e. the group

of exact sequences

(2.3) 0→ Ψ→ Γ→ Φ→ 0

with the usual addition of extensions (cf. [15]).

An extension of a t-module Φ : Fq[t] −→ Matd(K{τ}) by Ψ : Fq[t] −→

Mate(K{τ}) can be determined by a biderivation i.e. Fq−linear map δ :

Fq[t] −→ Mate×d(K{τ}) such that

(2.4) δ(ab) = Ψ(a)δ(b) + δ(a)Φ(b) for all a, b ∈ Fq[t].

The Fq−vector space of all biderivations will be denoted by Der(Φ,Ψ) (cf.

[17]). The map δ 7→ δ(t) induces the Fq−linear isomorphism of the vec-

tor spaces Der(Φ,Ψ) and Mate×d(K{τ}). Let δ(−) : Mate×d(K{τ}) −→

Der(Φ,Ψ) be an Fq−linear map defined by the following formula:

δ(U)(a) = UΦa −ΨaU for all a ∈ Fq[t] and U ∈ Mate×d(K{τ}).

The image of the map δ(−) is denoted by Derin(Φ,Ψ), and is called the space

of inner biderivations. We have the following Fq[t]−module isomorphism (cf.

[17, Lemma 2.1]):

Ext1τ (Φ,Ψ) ∼= cokerδ(−) = Der(Φ,Ψ)/Derin(Φ,Ψ).(2.5)

In [11] the second and third author proved the following theorem:

Theorem 2.1. [11, Theorem 10.2] Let

δ : 0 −→ F
i
−→ X

π
−→ E −→ 0

be a short exact sequence of t−modules given by the biderivation δ and let

G be a t−module.
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(i) There is an exact sequence of Fq[t]−modules:

0 −→ Homτ (G,F )
i◦−
−→ Homτ (G,X)

π◦−
−→ Homτ (G,E) −→

δ◦−
−→ Ext1τ (G,F )

−i◦−
−→ Ext1τ (G,X)

−π◦−
−→ Ext1τ (G,E)→ 0.

(ii) There is an exact sequence of Fq[t]−modules:

0 −→ Homτ (E,G)
−◦π
−→ Homτ (X,G)

−◦i
−→ Homτ (F,G)

−◦δ
−→

−→ Ext1τ (E,G)
−◦(−π)
−→ Ext1τ (X,G)

−◦(−i)
−→ Ext1τ (F,G)→ 0.

When K is a perfect field, σ will denote the inverse of τ . Then to simplify

notation the value of σn on x ∈ K will be denoted as x(−n) for n ∈ N.

Definition 2.9. Let K be a perfect field. The ring K{σ} of adjoint twisted

polynomials over K is defined by the following action of σ (cf. [7]):

σx = x(−1)σ for x ∈ K.

A t
σ−module is defined similarly as a t−module by replacing τ with σ.

Similarly one defines a morphism of tσ−modules. The category of tσ−modules

with the zero t
σ−module attached is an additive, Fq[t]−linear category.

The following maps:

(−)σ : K{τ} → K{σ};
( n∑

i=0

aiτ
i
)σ

=
n∑

i=0

a
(−i)
i σi,

(−)τ : K{σ} → K{τ};
( n∑

i=0

biσ
i
)τ

=
n∑

i=0

b
(i)
i τ

i.

are Fq-linear mutual inverses. We associate with Φ : Fq[t] → Mate(K{τ})

the adjoint homomorphism

Φσ : Fq[t]→ Mate(K{σ})

such that each matrix Xt is mapped to
[(
Xt(τ)

)σ]T
. The inverse of (−)σ is

given by the map that associates with Γ : Fq[t]→ Mate(K{σ}) the following

homomorphism:

Γτ : Fq[t]→ Mate(K{τ}); Xt →
[(
Xt(σ)

)τ]T

We have the following:

Theorem 2.2. [11, Theorem 7.2] Assume that K is a perfect A−field. Let

Φ and Ψ be t−modules. Then there exists an isomorphism of Fq[t]-modules:

Ext1τ (Φ,Ψ) ∼= Ext1σ(Ψ
σ,Φσ)

Let us make the following general remark:
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Remark 2.10. By Theorem 2.2 all algorithms presented in the sequel can

be easily adapted for computation of tσ−structure on suitable Ext1τ (Φ,Ψ)

where degτΨ > degτΦ.

3. Algorithm of t−reduction

In [17] a method for determination of t−module structure on

Ext1(C⊗n, C⊗m) for n < m was given. The method used the description of

extension groups in terms of biderivations. Then various generalizations of

this were constructed and used in [11] for determination of the t−module

structure on the space Ext1τ (Φ,Ψ) where Φ and Ψ are t−modules of some

specific forms satisfying the condition degτΦ > degτΨ. It turns out that

these computations can be put together into one algorithm which we call

t−reduction. We advise the reader to consult the Example 4.1 of [11] which

illustrates the action of the t−reduction algorithm in the special case of two

Drinfeld modules.

Before we describe the t−reduction algorithm in full generality let us

introduce some more notation.

Let Φ resp. Ψ be t−modules of dimensions d resp. e. By Ei×j we denote

the matrix of type e×d, where the only nonzero entry is 1 at the place i×j.

For a matrix N =
[
ni,j

]
∈ Mate×d(Z≥0), whose entries are non-negative

integers we denote:

Mate×d(K{τ})<N =
{[
wi,j(τ)

]
∈ Mate×d(K{τ}) | degτ wi,j(τ) < ni,j ∀i, j

}

The t−reduction algorithm is performed in the following steps

Step 1.

We use an isomorphism of Fq[t]−modules

Ext1τ (Φ,Ψ) ∼= Der(Φ,Ψ)/Derin(Φ,Ψ),

and identify every element of Ext1τ (Φ,Ψ) with the corresponding (class)

of biderivation δ : Fq[t] −→ Mate×d(K{τ}). Since every biderivation is

uniquely determined by δt := δ(t), we can view every element of Ext1τ (Φ,Ψ)

as the class of the matrix δt ∈ Mate×d(K{τ}).

Step 2.

We find a basis
(
Ui×j

)
of the space Mate×d(K) such that the inner bideriva-

tions δ(cτ
kUi×j) for c ∈ K i k = 0, 1, 2, . . . fulfill the following conditions:

A. the inner biderivations δ(cτ
kUi×j) form a basis of the Fq−linear space

Derin(Φ,Ψ);
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B. the matrix δ
(cτkUi×j)
t has at the i× j-entry a polynomial whose coef-

ficient at the biggest power of τ is equal to c.

C. for every biderivation δ ∈ Der(Φ,Ψ) there exists a sequence of inner

biderivations δ(clτ
klUi×j) wbere cl ∈ K and kl ∈ Z≥0 for l = 1, 2, . . . , r

such that the reduced biderivation:

δreduce = δ −
r∑

l=1

δ(clτ
kl ·Ui×j) ∈ Mate×d(K{τ})<N ,

where N =
[
degτ δ

(cτ0Ui×j)
t

]
i,j
.

D. different reduced biderivations in Mate×d(K{τ})<N represent differ-

ent elements in Ext1τ (Φ,Ψ).

Points A., B., C. and D. imply that there exists an isomorphism of Fq−linear

spaces:

(3.1) Ext1τ (Φ,Ψ) ∼= Mate×d(K{τ})<N .

Step 3.

In the space Mate×d(K{τ})<N we choose the set of generators of the follow-

ing form:

Ei×jcτ
k for c ∈ K, and k = 0, 1, 2, . . . , ni×j − 1

Step 4.

In order to determine the structure of a t−module on Ext1τ (Φ,Ψ) we transfer

the Fq[t]−module structure from Ext1τ (Φ,Ψ) = Der(Φ,Ψ)/Derin(Φ,Ψ) to

the space Mate×d(K{τ})<N via the isomorphism (3.1). To achieve this it is

enough to find the value of multiplication by t on the generators from Step

3. Recall that multiplication of δ ∈ Der(Φ,Ψ)/Derin(Φ,Ψ) by t is given by

the following formula cf. [17]: t ∗ δ = Ψt · δ. Thus in this step we determine

the values of multiplication by t on the generators chosen in Step 3:

t ∗ Ei×jcτ
k = Ψt · Ei×jcτ

k.

Step 5.

If t ∗ Ei×jcτ
k /∈ Mate×d(K{τ})<N then we reduce the terms of too big de-

grees by means of the inner biderivations from Step 2. We finish the process

when the reduced biderivation is in Mate×d(K{τ})<N .

Step 6.

We write the reduced values of t ∗Ei×jcτ
k in the coordinate system Ei×jτ

k.

Step 7.
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Since every expression of the form cq
m

can be written as the evaluation of

the monomial τm at τ = c the coordinate vector for every value of t∗Ei×jcτ
k

can be written as the vector of polynomials in K{τ} evaluated in τ = c.

Final Step

We form a matrix Πt, whose columns are the vectors of polynomials com-

puted in Step 7. Matrix Πt determines the t−module structure on Ext1τ (Φ,Ψ).

Remark 3.1. Notice that the condition for the degrees of t−modules is not

sufficient for the reduction algorithm to be always executable. This follows

from the fact that we cannot always perform Step 2 i.e. we cannot find

the basis (Ui×j)i,j such that the above mentioned inner biderivations fulfill

conditions A., B., C. and D. in Step 2. The reader can see this by taking

Φt =

[
θ + τ 2 τ
τ θ

]
and Ψt = θ + τ.

However, we have the following:

Proposition 3.1. Let Φ and Ψ be t−modules such that degτΦ > degτΨ

and for which there exists a basis
(
Ui×j

)
i,j

satisfying the conditions of Step

2 of t−reduction algorithm. Then the t−reduction algorithm is correct i.e.

we finally obtain the matrix Πt of the following form:

Πt = (θI +NΠ)τ
0 +

finite∑

i=1

Ciτ
i,

where Ci ∈ Mat(K) and N is a nilpotent matrix.

Proof. Let

Φ = (θI +NΦ)τ
0 +

n∑

i=1

Aiτ
i, and Ψ = (θI +NΨ)τ

0 +

m∑

i=1

Biτ
i,

where n = degτΦ > degτΨ = m. Without loss of generality we may assume

that NΨ is a lower triangular matrix.

Assume there exists a basis
(
Ui×j

)
i,j

of the space Mate×d(K{τ}) fulfilling

conditions A., B., C. and D. of Step 2. Consider the following biderivations:

t ∗ Ei×jcτ
k = Ψt · Ei×jcτ

k =
(
(θI +NΨ)τ

0 +
m∑

l=1

Blτ
l
)
· Ei×jcτ

k =(3.2)

=
(
θI +NΨ

)
Ei×jcτ

k +
m∑

l=1

cq
l

BlEi×jτ
k+l

Step 2. guarantees that there exists a sequence of inner biderivations:

δ(c1τ
k1Ui1×j1

), δ(c2τ
k2Ui2×j2

), δ(csτ
ksUis×js ).
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such that the reduced biderivation

(3.3) t ∗Ei×jcτ
k −

s∑

l=1

δ(clτ
klUil×jl

) ∈ Mate×d(K{τ})<N .

Notice that we do not reduce the coefficient at τk since Ei×jcτ
k ∈ Mate×d(K{τ})<N .

First we will show that that the biderivation (3.3) has the following form:

(3.4)

((
θI +NΨ

)
Ei×jc+

[
wa×b,k(c)

]
a,b

)
τk +

finite∑

l=0, l 6=k

[
wa×b,l(c)

]
a,b
τ l,

where wa×b,l(τ) are twisted polynomials inK{τ} with coefficients at τ 0 equal

to zero. Notice that some of these polynomials might be identically equal to

zero. The proof is by a finite induction on the number of inner biderivations

used in the reduction process. Notice that the biderivation (3.2) i.e. before

the start of the reduction process is of the form (3.3). Assume that, after

reduction by means of r − 1 inner biderivations, the biderivation (3.2) has

the following form:

t ∗ Ei×jcτ
k −

r−1∑

l=1

δ(clτ
klUil×jl

) =

((
θI +NΨ

)
Ei×jc+

[
va×b,k(c)

]
a,b

)
τk+

+

finite∑

l=0, l 6=k

[
va×b,l(c)

]
a,b
τ l,

for some twisted polynomials va×b,l(τ) with no constant terms. We will show

that after next reduction by the biderivation δ(crτ
krUir×jr ) we still obtain a

biderivation of the form (3.4). First we find the form of this inner bideriva-

tion.

δ(crτ
krUa×b) = crτ

krUir×jrΦ−Ψcrτ
krUir×jr

= cr

(
:=
[
da×b

]
a,b︷ ︸︸ ︷

(θ(kr) − θ)U
(kr)
ir×jr

+ U
(kr)
ir×jr

NΦ −NΨU
(kr)
ir×jr

)
τkr+

+

m∑

l=1

(
cr U

(kr)
ir×jr

A
(kr)
l︸ ︷︷ ︸

:=
[
âa×b,l

]
a,b

−Blc
(l)
r Uir×jr︸ ︷︷ ︸

:=
[
b̂a×b,l

]
a,b

)
τkr+l +

n∑

l=m+1

cr U
(kr)
ir×jr

A
(kr)
l︸ ︷︷ ︸

:=
[
âa×b,l

]
a,b

τkr+l(3.5)

= cr
[
da×b

]
a,b
τkr +

m∑

l=1

(
cr
[
âa×b,l

]
a,b
− c(l)r

[̂
ba×b,l

]
a,b

)
τkr+l

+

n∑

l=m+1

cr
[
âa×b,l

]
a,b
τkr+l
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where A
(kr)
∗ means that every entry of this matrix is raised to the power qkr .

Recall that according to Step 2 the inner biderivation δ(crτ
krUir×jr ) as an ir×

jr entry has a twisted polynomial with the coefficient at the biggest power

τM equal to cr. This biderivation is used for reduction of the term vir×jr,M(c)

by putting cr =
vir×jr,M(c)

âir×jr

. Write the inner biderivation δ(crτ
krUa×b)in the

following form:

δ(crτ
krUa×b) =

kr+n∑

l=kr

[
ua×b,l(cr)

]
a,b
τ l,

where ua×b,l(τ) are twisted polynomials in K{τ} with no constant terms.

Then

t ∗ Ei×jcτ
k −

r∑

l=1

δ(clτ
klUil×jl

) =

((
θI +NΨ

)
Ei×jc

+
[
va×b,k(c)− ua×b,k(cr)

]
a,b

)
τk +

finite∑

l=0, l 6=k

[
va×b,k+l(c)− ua×b,l(cr)

]
a,b
τ l,

where we set ua×b,l(τ) = 0 for l /∈ {kr, kr + 1, . . . , kr + n}.

Substituting

wa×b,l(τ) = va×b,l(τ)− ua×b,l

(
vir×jr,M(τ)

âir×jr

)

we see that the twisted polynomials wa×b,l(τ) have no constant terms since

va×b,l(τ) and ua×b,l(τ) have no constant terms. This finishes the inductive

step.

The form of the biderivation (3.4) implies that one can perform Step 7

and the Final Step. In this way we obtain a matrix Πt of the following form:

Πt = (θI +NΠ)τ
0 +

finite∑

l=1

Clτ
l.

It remains to show that NΠ is a nilpotent matrix. Since the twisted poly-

nomials wa×b,k+l(τ) in biderivations (3.4) have no constant terms then the

entries of NΠ for the multiplication t ∗ Ei×jcτ
k come from the entries of

NΨEi×j . Since NΨ is a lower triangular matrix then NΠ is also lower trian-

gular and therefore nilpotent. �

Definition 3.2. If the t−module structure on Ext1τ (Φ,Ψ) can be obtained

from the described above t−reduction algorithm we will say that such a

t−module structure comes from t−reduction.
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Remark 3.3. In this notation matrices Ui×j for some cases considered in

[11] had the following forms:

• Ui×j = Ei×jA
−1
n for Ext1τ (Φ, C

⊗e) where Φt = (θI+NΦ)τ
0+

n∑
j=1

Ajτ
j ,

n > 1, is a t−module of dimension d, such that An is an invertible

matrix and C⊗e is the e−th tensor of the Carlitz module. Ei×j ∈

Me×d(K) denotes here the matrix that has 1 at the place (i, j) and

0 otherwise.

• Ui×j = EjA
−1
n for Ext1τ (Φ, ψ) where Φt = (θI + NΦ)τ

0 +
n∑

j=1

Ajτ
j

is a t−module of dimension d, where An is an invertible matrix

and ψt = θ +
m∑
j=1

bjτ
j is a Drinfeld module satisfying the condition

degτΦ > degτψ. Ei ∈M1×d(K) denotes here a row matrix with 1 on

the i-th place and 0 otherwise.

The reader can easily find the forms of Ui×j for all other cases i.e. for

Ext1τ (φ, ψ) where φ and ψ are Drinfeld modules with degτφ > degτψ,

Ext1τ

(∏n

i=1 φi,
∏m

j=1 ψj

)
where degτφi > degτψj for i = 1, . . . , n, j =

1, . . . , m and Ext1τ

(
Φ,
∏m

j=1 ψj

)
where Φ is a t−module, ψj are Drinfeld

modules and degτΦ > degτψj , j = 1, . . . , m.

Notice that by [11, Proposition 5.1], [11, Theorem 6.1], [11, Theorem

8.3], [11, Theorem 8.4], and [11, Theorem 9.2] all the above mentioned

t−module structures come from t−reduction.

For the t−module structures coming from t−reduction we have the fol-

lowing useful lemma:

Lemma 3.2. Let

(3.6) 0 −→ Ψ −→ Υ −→ Φ −→ 0

be a short exact sequence of t−modules.

(i) If ζ is a t−module such that Homτ (Ψ, ζ) = 0 and the spaces Ext1τ (Ψ, ζ)

and Ext1τ (Φ, ζ) have t−module structures coming from t−reduction

then Ext1τ (Υ, ζ) has also a t−module structure coming from t−reduction.

(iD) If ζ is a t−module such that Homτ (ζ,Φ) = 0 and the spaces Ext1τ (ζ,Ψ)

and Ext1τ (ζ,Φ) have t−module structures coming from t−reduction

then Ext1τ (ζ,Υ) has also a t−module structure coming from t−reduction.

Proof. We will prove part (i). The proof of part (iD) is analogous.
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Denote dimΦ = d, dimΨ = e and dim ζ = f . Assume that the sequence

(3.6) is given by a biderivation δ, i.e.

Υ =

[
Φ 0
δ Ψ

]
.

Applying the functor Homτ (−, ζ) to the sequence (3.6), by Theorem 2.1, we

obtain the following exact sequence:

0 −→ Homτ (Φ, ζ) −→ Homτ (Υ, ζ) −→

=0︷ ︸︸ ︷
Homτ (Ψ, ζ) −→

−→ Ext1τ (Φ, ζ) −→ Ext1τ (Υ, ζ) −→ Ext1τ (Ψ, ζ) −→ 0.

and therefore the following short exact sequence:

0 −→ Ext1τ (Φ, ζ) −→ Ext1τ (Υ, ζ) −→ Ext1τ (Ψ, ζ) −→ 0,

where both the left an right terms are t−modules. Every element from

Ext1τ (Υ, ζ)
∼= Der(Υ, ζ)/Derin(Υ, ζ) is given by the following biderivation:
[
δ1 δ2

]
∈ Matf×d+e(K{τ}) = Der(Φ, ζ)×Der(Ψ, ζ).

Since the t−module structures on Ext1τ (Φ, ζ) and Ext1τ (Φ, ζ) come from

t−reduction there exist bases
(
UΦ,ζ
i×j

)
for i ∈ {1, . . . , f} and j ∈ {1, . . . , d}

in the space Matf×d(K) and
(
UΨ,ζ
i×l

)
for i ∈ {1, . . . , f} and l ∈ {1, . . . , e} in

the space Matf×e(K) which satisfy the conditions in Step 2. Consider the

following basis of the space Matf×d+e(K)
(
[
UΦ,ζ
i×j 0

]
,
[
0 UΨ,ζ

i×l

]
)
,

where i ∈ {1, . . . , f}, j ∈ {1, . . . , d} and l ∈ {1, . . . , e}. Then an inner

biderivation from Derin(Υ, ζ) is built from the two biderivations of the fol-

lowing forms:

(a)

δ

(
cτk

[
UΦ,ζ
i×j 0

])

= cτk
[
UΦ,ζ
i×j 0

]
·

[
Φ 0
δ Ψ

]
− ζcτk

[
UΦ,ζ
i×j 0

]

=
[
cτkUΦ,ζ

i×jΦ− ζcτ
kUΦ,ζ

i×j 0
]
=
[
δ(cτ

kU
Φ,ζ
i×j ) 0

]

where δ(cτ
kU

Φ,ζ
i×j ) ∈ Derin(Φ, ζ).

(b)

δ

(
cτk

[
0 UΨ,ζ

i×l

])

=
[
0 cτkUΨ,ζ

i×l

]
·

[
Φ 0
δ Ψ

]
− ζ

[
0 cτkUΨ,ζ

i×l

]

=
[
cτkUΨ,ζ

i×l · δ δ(cτ
kU

Ψ,ζ
i×l

)
]
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where δ(cτ
kU

Ψ,ζ

i×l
) ∈ Derin(Φ, ζ).

Both of these biderivations fulfill conditions A., B., C. and D. of Step 2.

Then Proposition 3.1 yields the assertion (i). �

The following interesting question was asked by the referee: When the

space Ext1 can be expressed as a quotient of the Hom-space? Such a situ-

ation will take place when the last two Ext−groups in the six-term exact

sequence described in Theorem 2.1 are isomorphic. The following lemma

yields the equivalent condition for this in the language of biderivations.

Lemma 3.3. Let

δ : 0 −→ Ψ
i
−→ Υ

π
−→ Φ −→ 0

be a short exact sequence of t−modules given by the biderivation δ, where

dimΨ = e and dimΦ = d. Let ζ be a t−module of dimension f . Then

(i) an Fq[t]-homomorphism (−π) ◦ − : Ext1τ (ζ,Υ)
∼=
−→ Ext1τ (ζ,Φ) is an

isomorphism if and only if for arbitrary matrices

δ2 ∈ Mate×f

(
K{τ}

)
and u ∈ Matd×f

(
K{τ}

)

there exists a morphism F ∈ Homτ (ζ,Φ) such that

(3.7) δ2 + δ
(
F − u

)
∈ Derin(ζ,Ψ).

(iD) an Fq[t]-homomorphism − ◦ (−i) : Ext1τ (Υ, ζ)
∼=
−→ Ext1τ (Ψ, ζ) is an

isomorphism if and only if for arbitrary matrices

δ1 ∈ Matf×d

(
K{τ}

)
and u ∈ Matf×e

(
K{τ}

)

there exists a morphism F ∈ Homτ (Ψ, ζ) such that

(3.8) δ1 −
(
F − u

)
δ ∈ Derin(Φ, ζ).

Proof. We will prove the lemma for the case (i). The proof for the second

case is dual. Recall that the map i in the sequence δ is an inclusion on

the second coordinate and the map π is a projection on the first coordinate.

From (2.5) we have Ext1τ (ζ,Φ)
∼= Der(ζ,Φ)/Derin(ζ,Φ) and an isomorphism

Der(ζ,Φ) ∼= Matd×f

(
K{τ}

)
. Similarly, Ext1τ (ζ,Υ) ∼= Der(ζ,Υ)/Derin(ζ,Υ),

where Der(ζ,Υ) ∼= Mate+d×f

(
K{τ}

)
=
[
Mate×f

(
K{τ}

)
,Matd×f

(
K{τ}

)]T
.

Then the map (−π) ◦ − : Der(ζ,Υ)/Derin(ζ,Υ) −→ Der(ζ,Φ)/Derin(ζ,Φ)

on the biderivation level is given by the following formula:
[
δ1
δ2

]
+Derin(ζ,Υ) 7−→ −δ1 +Derin(ζ,Φ).
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This map will be an isomorphism if and only if its kernel is trivial i.e.

the condition −δ1 ∈ Derin(ζ,Φ) implies that

[
δ1
δ2

]
∈ Derin(ζ,Υ). This

is equivalent to the statement that for every matrix u ∈ Matd×f

(
K{τ}

)
,

where −δ1 = uζ − Φu there exists a matrix

[
w1

w2

]
∈ Mate+d×f

(
K{τ}

)

such that[
δ1
δ2

]
=

[
w1

w2

]
ζ −Υ

[
w1

w2

]
=

[
w1ζ − Φw1

w2ζ −Ψw2 − δw1

]
.

The equality δ1 = w1ζ − Φw1 is equivalent to the fact that the matrix

F = u + w1 is a morphism of t−modules ζ → Φ. Moreover, the equality

δ2 = w2ζ −Ψw2 − δw1 is equivalent to

δ2 + δ
(
F − u

)
= δ2 + δw1 ∈ Derin(ζ,Ψ).

�

Remark 3.4. The conditions (3.7) and (3.8) are difficult to handle because

they require understanding of the morphism space between two t−modules.

In general this is a very difficult task. For Drinfeld modules nice, but by no

means easy, algorithm of calculating the space of morphisms was developed

in [12].

It would be nice to have an example for which one of the conditions (3.7)

or (3.8) is fulfilled.

In the following propositions the answers are negative.

Proposition 3.4. Let Φ and Ψ be t−modules with the zero nilpotent ma-

trices NΦ and NΨ. Let

δ : 0 −→ Ψ
i
−→ Υ

π
−→ Φ −→ 0

be a short exact sequence of t−modules given by the biderivation δ. If δ has

no constant term then both conditions (3.7) and (3.8) are not fulfilled.

Proof. Notice that if NΦ = NΨ = 0 then every inner biderivation from

Derin(Φ,Ψ) has no constant term. Indeed, if dimΦ = d and dimΨ = e then

for V ∈ Mate×d(K{τ}) we have:

δ(V ) =V Φ−ΨV = V
(
θI +

∑
Aiτ

i
)
−
(
θI +

∑
Biτ

i
)

=
(
V θ − θV

)
+ V

∑
Aiτ

i −
∑

Biτ
iV

and ∂δ(V ) = ∂(V θ − θV ) = ∂V θ − θ∂V = 0, where ∂ is a differentiation

given by the following formula: ∂
(
V0 +

∑
Viτ

i
)

= V0. We will show the

assertion of the proposition for the condition (3.7). Consider the equality
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δ2+δ(F −u) = δ(V ) for some V ∈ Mate×d(K{τ}). Differentiating both sides

we see that ∂δ2 = 0 which contradicts the fact that δ2 can be arbitrary. �

Proposition 3.5. Let φ, ψ and ζ be Drinfeld modules defined over an al-

gebraically closed field K and

δ : 0 −→ ψ
i
−→ Υ

π
−→ φ −→ 0

be a short exact sequence given by a biderivation δ such that ∂δ 6= 0. Then

both conditions (3.7) and (3.8) are not fulfilled.

Proof. We will give a proof for the condition (3.7). The proof for (3.8) is

dual.

We will act on the sequence δ by means of the functor Homτ (ζ,−). In

the condition (3.7) put u = 0. If the condition (3.7) holds true, then there

exists a morphism F ∈ Homτ (ζ, φ) such that

δ2 + δF ∈ Derin(ζ, ψ).

We will show that such a morphism cannot exist for arbitrary δ2. Notice

that every inner biderivation in Derin(ζ, ψ) has no constant term. Therefore

differentiating the above equality we obtain

∂δ2 + ∂F · ∂δ = 0,

where ∂δ2, ∂F and ∂δ are constant terms of δ2, F and δ respectively. Since

∂δ2 can be an arbitrary element of the field K we see that ∂F = −∂δ2/∂δ is

also arbitrary. This means that the constant term of the morphism between

Drinfeld modules can be equal to an arbitrary element of K. We will show

that this impossible if K is algebraically closed. If degτζ 6= degτψ, this

follows from the fact that Homτ (ζ, φ) = 0. So assume that degτζ = degτφ

and

ζ = θ +
n∑

i=1

aiτ
i, φ = θ +

n∑

i=1

biτ
i and F =

m∑

i=1

fiτ
i ∈ Homτ (ζ, φ).

Comparing the coefficients at τ i in the equality Fζ = φF we obtain the

following equalities:

fk

(
θ(k) − θ

)
=

k∑

i=1

(
bif

(i)
k−i − fk−ia

(k−i)
i

)
for k = 0, 1, . . . n+m,(3.9)

where we set fj = 0 for j > m and al = bl = 0 for l > n.

We consider two cases. If θ(s) 6= θ for every s = 1, 2, . . . , m then from

the equations (3.9) for k = 1, 2, . . . , m it follows that every term f1, f2,

. . . fm is uniquely determined by the values of some polynomial at f0 . Let

fm = w(f0) for w(x) ∈ K[x]. Consider g(x) = w(x) − µ for fixed µ ∈ K.
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Since K is algebraically closed there exists f0 ∈ K such that g(f0) = 0 i.e.

fm = w(f0) = µ. This means that the coefficient at the highest exponent

of τ can be arbitrary. But the equality (3.9) for k = m+ n implies that fm

must fulfill the following relation

bnf
(n)
m = fma

(m)
n .

Thus, fm is a root of a polynomial h(x) = bnx
qn−aq

m

n x and therefore cannot

be an arbitrary element of K.

Now let θ(s) = θ for some s ≤ m. Then simiarly as before from equalities

(3.9) for k = 1, 2, . . . , s − 1 we obtain that f1, f2, . . . , fs−1 are uniquely

determined by f0 by means of some polynomials evaluated at f0. Let f1 =

w1(f0), . . . , fs−1 = ws−1(f0). Then (3.9) for k = s implies the following

equality:

0 =
s∑

i=1

(
bif

(i)
s−i − fs−ia

(k−i)
i

)
=

s∑

i=1

(
biws−i(f0)

(i) − ws−i(f0)a
(k−i)
i

)
.

Therefore f0 is a root of the above polynomial. This contradicts the fact

that f0 can be arbitrary.

So, the condition (3.7) cannot be fulfilled for any δ2.

�

4. t−reduction algorithm in case of two t−modules

In this section we present an algorithm for determination of a t−module

structure on the space Ext1(Φ,Ψ), where Φ and Ψ are t−modules such that

degτΦ > degτΨ and the matrix at τdegτΦ in Φt is invertible. As a result we

obtain the following theorem which is a generalization of Theorems 8.4 and

9.2 of [11].

Theorem 4.1. Let Φ = (θI +NΦ)τ
0 +

degτΦ∑
i=1

Aiτ
i resp. Ψ = (θI +NΨ)τ

0 +

degτΨ∑
i=1

Biτ
i be t−modules of dimensions d resp. e. If the matrix AdegτΦ is

invertible and degτΦ > degτΨ then

(i) Ext1τ (Φ,Ψ) has a natural structure of a t−module coming from

t−reduction,

(ii) there exists a short exact sequence of t−modules

0 −→ Ext0,τ (Φ,Ψ) −→ Ext1τ (Φ,Ψ) −→ G
s
a −→ 0,

where s is the number of pairs (i, j) for which the matrices Ei×jA
−1
n NΦ

and NΨEi×jA
−1
n are the same.
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Proof. Part (i) follows from Proposition 3.1 by taking Ui×j = Ei×j · A
−1
n .

Notice that reasoning analogous to that in Theorem 9.2 of [11] shows that s

is equal to the number of inner biderivations δ(cτ
0Ui×j) that are in Der0(Φ,Ψ).

Recall that δ(cτ
0Ui×j) ∈ Der0(Φ,Ψ) iff ∂δ

(cτ0Ui×j)
t = 0. Therefore to finish the

proof, it is enough to notice that the constant term of the biderivation

δ
(cτ0Ui×j)
t

c
(
Ui×jNΦ −NΨUi×j

)
= c
(
Ei×j · A

−1
n NΦ −NΨEi×j · A

−1
n

)
= 0

iff the matrices Ei×jA
−1
n NΦ and NΨEi×jA

−1
n are the same. �

The following example illustrates Theorem 4.1

Example 4.1. Let

Φt =

[
θ τ 3

1 + τ 3 θ

]
and Ψt =

[
θ + τ 2 0

1 θ + τ

]
.

Then NΦ = NΨ =

[
0 0
1 0

]
, and A−1

3 =

[
0 1
1 0

]
. One readily veri-

fies that Ei×jA
−1
3 NΦ = NΨEi×jA

−1
3 only for (i, j) = (2, 2). Thus s = 1.

Accordingly, the reduction algorithm yields

Ext1τ (Φ,Ψ) =




θ −τ 2 0 0 0 0 0 0 0 0 0 0
0 θ −τ 2 0 0 (θ − θ(1))τ 2 0 0 0 0 0 0
τ 2 0 θ + τ 6 0 τ 4 0 0 0 0 0 0 0
0 0 0 θ 0 0 0 0 0 0 0 0
0 0 (θ − θ(1))τ 2 0 θ 0 0 0 0 0 0 0
0 τ 4 0 τ 2 0 θ 0 0 0 0 0 0
1 0 τ 4 0 τ 2 0 θ 0 −τ 0 0 0
0 1 0 0 0 τ 2 τ θ 0 0 0 τ 2

0 0 1 0 0 0 0 τ θ 0 0 0
0 τ 2 0 1 0 0 0 0 0 θ 0 0
0 0 τ 2 0 1 0 0 0 τ 2 τ θ 0
0 0 0 0 0 1 0 0 0 0 τ θ




The matrix for Ext0,τ (Φ,Ψ) comes then from the above matrix for Ext1τ (Φ,Ψ)

by removing the fourth row and fourth column.

Notation. In our pseudo-codes we use the following notation:

Ei×j - n ×m matrix with 1 in i-th row and j-th column and 0 everywhere

else

Deg(W) - degree of a τ - polynomial W

Dim(F) - dimension of a t-module F

Rows(M) - number of rows of a matrix M

Cols(M) - number of columns of a matrix M

Inverse(M) - inverse of a matrix M
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Coefficient(w, n) - coefficient an of a K{τ} polynomial w = amτ
m +

...+ a0

Substitute(expression, s, t) - replaces symbol s in expression with

symbol t (sometimes we substitute for any expression, then (_) stands for

any expression cf. line 29 of Algorithm 5. )

Notice that since we work with the non-commutative ring K{τ} certain care

is needed in this substitution (cf. Step 6 and Step 7, see also Example 4.1

of [11]).

M[i, j] - element Mi,j of a matrix M[
V1 ... Vk

]
- matrix with columns Vi

Algorithm 1

1: function Pmult(f , g) ⊲ Multiplication of τ polynomials
2: Input
3: f τ polynomial
4: g τ polynomial

5: Output
6: h τ polynomial equal to f · g

7: n← Deg(f)
8: m← Deg(g)
9: z : array with n+m+ 1 elements, initialized with 0’s

10: for i = 0..n do
11: for j = 0..m do
12: z[i+ j]← Coefficient(f, i) ·Coefficient(g, j)(i)

13: return
∑m+n

k=0 z[k]τ
k

14:

15: function TMult(Φ,Ψ) ⊲ Multiplication of matrices of τ polynomials
16: Input
17: Φ matrix of τ polynomials
18: Ψ matrix of τ polynomials

19: Output
20: X matrix of τ polynomials equal to Φ ·Ψ

21: n← Rows(Ψ)
22: m← Cols(Ψ)
23: p← Cols(Φ)
24: X : n× p matrix
25: for i = 1..n do
26: for j = 1..p do
27: sum← 0
28: for k = 1..m do
29: sum← sum+ Pmult(Ψ[i, k],Φ[k, j])

30: X[i, j]← sum

31: return X
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Algorithm 2

1: function Reduce1(V ,Φ,Ψ,A−1

n
) ⊲ Reduction of t-module using

2: inverse matrix
3: Input
4: V module to be reduced
5: Φ strictly pure t-module
6: Ψ a t-module of degree less than degree Φ
7: A

−1

n
inverse of the leading matrix of Φ

8: Output
9: V reduced module

10: n← Rows(V )
11: m← Cols(V )
12: r ← Deg(Φ)

⊲ we reduce degree of τ polynomial at position
13: i, j in V to degree less than r
14: for i = 1..n do
15: for j = 1..m do
16: r′ ← Deg(V [i, j])
17: while r′ ≥ r do
18: a← Coefficient(V [i, j], r′)
19: G← TMult(Ei×jaτ

r′−r,A−1

n
)

20: ⊲ we are setting the leading coefficient of G[i, j]
21: to be the same as leading coefficient of V [i, j]
22: G← TMult(G,Φ)−TMult(Ψ,G)
23: V ← V −G

24: r′ ← r′ − 1
25: return V

Algorithm 3

1: function CoefficientForm(V , d)
⊲ lists all coefficients up to degree defined by matrix d for each

2: τ polynomial in V in order defined by columns
3: Input
4: V matrix of τ polynomials
5: d matrix of integers with the same dimensions as V

6: Output
7: A column matrix of coefficients
8: n← Rows(V )
9: m← Columns(V )

10: s← 1
11: for i = 1..n do
12: for j = 1..m do
13: for k = 0..d[i, j]− 1 do
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14: A[s, 1]← Coefficient(V [i, j], k)
15: s← s+ 1
16: return A

Algorithm 4 Computing extension of t-modules with inverse matrix

1: function Extension1(Φ, Ψ)
2: Input
3: Φ, Ψ t-modules

4: Output
5: Π extension of Φ by Ψ

6: n← Dim(Ψ)
7: m← Dim(Φ)
8: r ← Deg(Φ)
9: d← [r]n×m ⊲ n×m matrix with all elements equal to r.

10: We do not have to construct this matrix
11: here, but it generalizes nicely for the next
12: algorithm
13: An : m×m matrix
14: ⊲ computing inverse matrix used later for
15: degree reduction
16: for i = 1..m do
17: for j = 1..m do
18: if Deg(Φ[i, j]) = r then
19: An[i, j]← Coefficient(Φ[i, j], r)
20: else
21: An[i, j]← 0

22: A−1

n
← Inverse(An)

23: s← 1
24: for i = 1..n do ⊲ computing columns of Π
25: for j = 1..m do
26: for k = 1..r do
27: Vs ← TMult(Ψ, Ei×jcτ

k−1)
28: Vs ← Reduce1(Vs,Φ,Ψ,A

−1

n
)

29: Vs ← CoefficientForm(Vs, d)
30: Substitute(Vs, c

(_) → τ (_))
31: s← s+ 1
32: Π←

[
V1 ... Vs−1

]

33: return Π

5. Algorithm in case of a composition series

Since the category of t−modules is not abelian then for a t−module

Υ and its t−submodule Ψ their quotient Υ/Ψ is usually not a t−module
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(although it is an Fq[t]−module since the category of t−modules is a sub-

category of the category of Fq[t]−modules). This motivates the following

definitions:

Definition 5.1. We say that a t−module Ψ is a τ− submodule of a

t−module Υ iff there exists a short exact sequence of t−modules:

0 −→ Ψ −→ Υ −→ Υ/Ψ −→ 0.

It is clear that the dimension of a τ−submodule Ψ is always smaller than

the dimension Υ

Definition 5.2. We say that a t−module Ψ is τ−simple if it does not have

any non-trivial τ− submodules i.e. it is not a middle term of any nontrivial

short exact sequence of t−modules with nonzero terms.

Directly from the Definition 5.2 it follows that Drinfeld modules are

τ−simple. On the other hand any t−module Υ for which under some iso-

morphism the matrix Υt can be reduced to the lower triangular matrix is

not τ -simple. This easily follows from the description of an extension by

means of a biderivation.

Example 5.1. The t−module given by the matrix

Υt =

[
θ τ
τ θ

]
∼=

[
θ + τ 0
τ θ − τ

]

is not τ -simple since the isomorphism

f =

[
1 1
0 1

]
.

brings Υt to the lower diagonal form.

Definition 5.3. By a τ−composition series of a t−module Φ we mean a

sequence of t−modules:

(5.1) 0 = Φ0 ⊂ Φ1 ⊂ Φ2 ⊂ · · · ⊂ Φn−1 ⊂ Φn = Φ

such that Φi ⊂ Φi+1 is an inclusion of a τ− submodule and the quotient

t−module Φi+1/Φi is τ− simple.

Let us give a simple proof of the following:

Theorem 5.1. Any t−module is either τ−simple or has non-trivial, i.e.

n ≥ 2, τ− composition series (5.1).

Proof. Notice that existence of τ -composition series:
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0 = Υ0 ⊂ Υ1 ⊂ · · · ⊂ Υn−1 ⊂ Υn = Υ,

where the quotients σi = Υi/Υi−1 are τ−simple t−modules is equivalent

with the fact that Υ is isomorphic with a t−module given by the block

lower-triangular matrix where the blocks on the diagonal correspond to

subsequent τ−simple modules σn, σn−1,. . . , σ1. So it is enough to show that

every t−module is given by the block lower-triangular matrix where on the

diagonal one has τ−simple modules. If t−module Υ is τ−simple then there

is nothing to prove. We use induction on dimension d of the non-simple

t−module. Assume that Υ is not τ−simple. In particular d > 1. If d = 2

then we the following exact sequence:

0→ σ1 → Υ→ σ2 → 0

where σ1 and σ2 are Drinfeld modules. Therefore Υ is given by the following

matrix:

Υt =

[
σ2,t 0
δt σ1,t

]
,

where δt is a biderivation. This shows the assertion for d = 2. Assume that

the theorem holds true for all t−modules of dimension less than d. Let Υ be

of dimension d. Since Υ is not τ−simple there exists a short exact sequence

of the form: 0 −→ Φ −→ Υ −→ Ψ −→ 0. Then

(5.2) Υt =

[
Ψt 0
δt Φt

]
,

for certain biderivation δ. Since dimensions of Φ and Ψ are less than d by

inductive hypothesis we can consider Φt and Ψt as block lower-triangular

matrices with τ−simple t−modules on diagonals. Thus the same holds true

for Υt. �

Example 5.2. The product Πn
i=1φi of Drinfeld modules φi has the following

τ−composition series:

(5.3) 0 ⊂ φ1 ⊂ φ1 × φ2 ⊂ · · · ⊂ Πn−1
i=1 φi ⊂ Πn

i=1φi,

where quotients of consecutive τ−submodules are Drinfeld modules (which

are τ−simple t−modules).
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Theorem 5.2. Let Υ and Υ̂ be t−modules having the following composition

series:

0 = Υ0 ⊂ Υ1 ⊂ · · · ⊂ Υn−1 ⊂ Υn = Υ,

0 = Υ̂0 ⊂ Υ̂1 ⊂ · · · ⊂ Υ̂m−1 ⊂ Υ̂m = Υ̂,

such that for i = 1, 2, · · · , n and j = 1, 2, · · · , m the following conditions

are fulfilled:

(i) the quotients σi = Υi/Υi−1 and σ̂j = Υ̂j/Υ̂j−1 are τ -simple t−modules;

(ii) Homτ (σi, σ̂j) = 0, i = 1, . . . , n; j = 1, . . . , m;

(iii) for every pair (i, j), i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , m} the

spaces Ext1τ (σi, σ̂j) have t−module structures coming from t−reduction.

Then the space Ext1τ (Υ, Υ̂) has a t−module structure coming from t−reduction.

Proof. For i = 1, 2, . . . , n and j = 1, 2, . . . , m we introduce the following

notation for exact sequences of t−modules:

ηi : 0 −→ Υi−1 −→ Υi −→ σi −→ 0

η̂j : 0 −→ Υ̂j−1 −→ Υ̂j −→ σ̂j −→ 0.

Applying the functor Homτ (−, σ̂j) to the sequence η2 by Theorem 2.1 we

obtain the following six term exact sequence:

0 −→

=0︷ ︸︸ ︷
Homτ (σ2, σ̂j) −→ Homτ (Υ2, σ̂j) −→

=0︷ ︸︸ ︷
Homτ (Υ1, σ̂j) −→

−→ Ext1τ (σ2, σ̂j) −→ Ext1τ (Υ2, σ̂j) −→ Ext1τ (Υ1, σ̂j) −→ 0.

Then Homτ (Υ2, σ̂j) = 0 and applying Lemma 3.2 to the lower exact se-

quence we see that the space Ext1τ (Υ2, σ̂j) has a t−module structure coming

from t−reduction. Proceeding analogously for η3, η4, . . . , ηn we obtain that

Homτ (Υ, σ̂j) = 0 and the space Ext1τ (Υ, σ̂j) has a t−module structure com-

ing from t−reduction. Applying the functor Homτ (Υ,−) to the sequence η̂2

again by Theorem 2.1 we obtain the following six term exact sequence:

0 −→

=0︷ ︸︸ ︷
Homτ (Υ, Υ̂1) −→ Homτ (Υ, Υ̂2) −→

=0︷ ︸︸ ︷
Homτ (Υ, σ̂2) −→

−→ Ext1τ (Υ, Υ̂1) −→ Ext1τ (Υ, Υ̂2) −→ Ext1τ (Υ, σ̂2) −→ 0

Thus Homτ (Υ, Υ̂2) = 0 and applying again Lemma 3.2 to the lower row we

obtain that Ext1τ (Υ, Υ̂2) has a t−module structure coming from t−reduction.
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Proceeding in this way for sequences η̂j , j = 3, 4, . . . , m we finally obtain

that Ext1τ (Υ, Υ̂) has a t−module structure coming from t−reduction. �

We have the following corollary of Theorem 5.2:

Corollary 5.3. Let Υ and Υ̂ be t−modules with the following τ− compo-

sition series:

0 = Υ0 ⊂ Υ1 ⊂ · · · ⊂ Υn−1 ⊂ Υn = Υ,

0 = Υ̂0 ⊂ Υ̂1 ⊂ · · · ⊂ Υ̂m−1 ⊂ Υ̂m = Υ̂,

where quotients σi = Υi/Υi−1 and σ̂j = Υ̂j/Υ̂j−1 are Drinfeld modules

such that degτσi > degτ σ̂j for every pair (i, j), i ∈ {1, 2, . . . , n} and j ∈

{1, 2, . . . , m}. Then the space Ext1τ (Υ, Υ̂) has a structure of a t−module

coming from t−reduction.

Remark 5.4. Notice that Corollary 5.3 is a generalization of [11, Theorem

6.1.] which asserts that Ext1τ for products of Drinfeld modules, with the

appropriate assumption on degrees, has a t−module structure.

Algorithm 5

1: function Reduce2(V ,Φ,Ψ)
⊲ Reduction of t-module for lower triangular t-modules

2: Input
3: V module to be reduced
4: Φ t-module denoted as Υ in Corollary 5.3

5: Ψ t-module denoted as Υ̂ in Corollary 5.3

6: Output
7: V reduced module
8: n← Rows(V )
9: m← Columns(V )

⊲ we reduce degree of τ polynomial at position i, j
10: in V to degree less than Φ[j, j], columns are redu-
11: ced in reverse order
12: for i = 1..n do
13: for j = m..1 do
14: r′ ← Deg(V [i, j])
15: r ← Deg(Φ[j, j])
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16: while r′ ≥ r do
17: a← Coefficient(V [i,j],r′)

(Coefficient(Φ[j,j],r))(r
′−r)

18: G← Ei×jaτ
r′−r

19: G← TMult(G,Φ)−TMult(Ψ,G)
20: V ← V −G

21: r′ ← r′ − 1
22: return V

23:

Algorithm 6 Computing extension of triangular t-modules

1: function Extension2(Φ, Ψ)
2: Input
3: Φ, Ψ t-modules

4: Output
5: Π extension of Φ by Ψ

6: n← Dim(Φ)
7: m← Dim(Ψ)
8: d : n×m matrix
9: for i = 1..n do ⊲ computing degrees of basis elements

10: for j = 1..m do
11: d[i, j]← Deg(Φ[j, j])

12: s← 1
13: for i = 1..n do ⊲ computing columns of Π
14: for j = 1..m do
15: r ← Deg(Φ[j, j])
16: for k = 1..r do
17: Vs ← TMult(Ψ, Ei×jcτ

k−1)
18: Vs ← Reduce2(Vs,Φ,Ψ)
19: Vs ← CoefficientForm(Vs, d)
20: Substitute(Vs, c

(_) → τ (_))
21: s← s+ 1
22: Π←

[
V1 ... Vs−1

]

23: return Π

6. Exact formulas for Ext1 for two Drinfeld modules

In most cases analyzed in this paper, it is unreasonable to expect get-

ting exact formulas for Ext1 since they are too complicated. In this sec-

tion we present exact formulas, for the easiest case, describing t−module

structure on Ext1τ (φ, ψ) for two Drinfeld modules. So assume that φ and

ψ are Drinfeld modules, such that φt = θ +
n∑

i=1

aiτ
i, ψt = θ +

m∑
j=1

bjτ
j and

r := n−m > 0. We transfer the Fq[t]−module structure from Ext1τ (φ, ψ) =

Der(φ, ψ)/Derin(φ, ψ) to the space K{τ}<degτφ, via the isomorphism from
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Lemma 3.1 of [11]. Since each element of K{τ}<degτφ is of the form
n−1∑
i=0

ciτ
i,

it is sufficient to determine the values of multiplication by t on the gener-

ators ciτ
i for i = 0, 1, . . . , n − 1, where ci ∈ K. Our reduction algorithm

implies that the t−module structure on Ext1τ (φ, ψ) is given by the following

matrix:

(6.1) Πt =

[
[
t∗τ 0

]
,
[
t∗τ 1

]
, . . . ,

[
t∗τ r−1

]
,
[
t∗τ r

]
,
[
t∗τ r+1

]
, . . . ,

[
t∗τn−1

]
]
.

defining the map Π : Fq[t] −→ Mn(K){τ}. In order to describe
[
t ∗ τ i

]

we introduce the following notation: bkτ
k|ci := c

(k)
i bk for k = 1, . . . , m and

i = 1, . . . , degτφ − 1. Let ei = τ i for i = 0, 1, · · · , n − 1 be the basis of

K{τ}<degτφ. Then the column vector
[
t ∗ τ i

]
is defined by the following

property: t ∗ (ciτ
i) =

[
t ∗ τ i

]
|ci.

In the case m > r we obtain the following formula
[
t ∗ τ i

]
=
[
0, . . . , 0︸ ︷︷ ︸

i−1

, θ, b1τ, b2τ
2, . . . , bmτ

m, 0, . . . , 0
]t

for i = 0, 1, 2, . . . r − 1.

Fix l ∈ {0, 1, . . . , m−1} and define recursively the following polynomials:

dr+l,n+k(τ) =

bm−l+kτ
m−l+k −

l∑
i=k+1

a
(i)
n+k−idr+l,n+i(τ)

a
(k)
n

(6.2)

for k = l, l − 1, . . . , 1, 0. Then we can express
[
t ∗ τ r+l

]
in an explicit way:

[
t∗τ r+l

]
=

=

[
0,
[(
θ − θ(j)

)
dr+l,n+j(τ) +

j−1∑

k=0

(
bj−kd

(j−k)
r+l,n+k(τ)− a

(k)
j−kdr+l,n+k(τ)

)]l
j=1

,
[ l∑

k=0

(
bj−kd

(j−k)
r+l,n+k(τ)− a

(k)
j−kdr+l,n+k(τ)

)]m−1

j=l+1
,

,
[ l∑

k=j−m

bj−kd
(j−k)
r+l,n+k(τ)−

l∑

k=0

a
(k)
j−kdr+l,n+k(τ)

]m+l

j=m
,

,
[
−

l∑

k=0

dr+l,n+ka
(k)
j−k

]r+l−1

j=m+l+1
, θ −

l∑

k=0

a
(k)
r+l−kdr+l,n+k(τ),

,
[
bj−r−lτ

j−r−l −

l∑

k=0

a
(k)
j−kdr+l,n+k(τ)

]n−1

j=r+l+1

]t
.

Remark 6.1. Notice that in the above formula the notation [f(j)]vj=u means

[f(u)], [f(u+ 1)], . . . [f(v)].
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In the case m = r we obtain the following coordinates
[
t ∗ τ i

]
=
[
0, . . . , 0︸ ︷︷ ︸

i−1

, θ, b1τ, b2τ
2, . . . , bmτ

m, 0, . . . , 0
]t

for i = 1, 2, . . . r − 1.

[
t ∗ τ r+l

]
=

[
0,
[(
θ − θ(j)

)
dr+l,n+1(τ) +

j−1∑

k=0

(
bj−kd

(j−k)
r+l,n+k(τ)− a

(k)
j−kdr+l,n+k(τ)

)]l
j=1

,

,
[ l∑

k=0

(
bj−kd

(j−k)
r+l,n+k(τ)− a

(k)
j−kdr+l,n+k(τ)

)]m
j=l+1

,

,
[ l∑

k=j−m

bj−kd
((j−k))
r+l,n+k(τ)−

l∑

k=0

a
(k)
j−kdr+l,n+k(τ)

]r+l−1

j=m+1
,

,
[
θ + bmd

(m)
r+l,n+l(τ)−

l∑

k=0

a
(k)
r+l−kdr+l,n+k(τ)

]
,

,
[
bj−r−lτ

j−r−l −
l∑

k=0

a
(k)
j−kdr+l,n+k(τ)

]n−1

j=r+l+1

]t
,

where the polynomials dr+l,n+k(τ) are the same as before, see (6.2).

In the case m > r we obtain the following coordinates
[
t ∗ τ i

]
=
[
0, . . . , 0︸ ︷︷ ︸

i−1

, θ, b1τ, b2τ
2, . . . , bmτ

m, 0, . . . , 0
]t

for i = 1, 2, . . . r − 1.

To describe the remaining coordinates we must consider two sub-cases: r+

l ≤ m or r + l > m.

In the sub-case r + l ≤ m we have:

[
t ∗ τ r+l

]
=

[
0,
(
θ − θ(j)

)[
dr+l,n+j(τ) +

j−1∑

k=0

(
bj−kd

(j−k)
r+l,n+k(τ)− a

(k)
j−kdr+l,n+k(τ)

)]l
j=1

,
[ l∑

k=0

(
bj−kd

(j−k)
r+l,n+k(τ)− a

(k)
j−kdr+l,n+k(τ)

)]r+l−1

j=l+1
,

+
[
θ +

l∑

k=0

(
br+l−kd

(r+l−k)
r+l,n+k(τ)− a

(k)
r+l−kdr+l,n+k(τ)

)]
,

,
[
bj−r−lτ

j−r−l +

l∑

k=0

(
bj−kd

(j−k)
r+l,n+k(τ)− a

(k)
j−kdr+l,n+k(τ)

)]m
j=r+l+1

,

,
[
bj−r−lτ

j−r−l +

l∑

k=j−m

bj−kd
(j−k)
r+l,n+k(τ)−

l∑

k=0

a
(k)
j−kdr+l,n+k(τ)

]m+l

j=m+1

,
[
bj−r−lτ

j−r−l −

l∑

k=0

a
(k)
j−kdr+l,n+k(τ)

]n−1

j=m+l+1

]t
,
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where the polynomials dr+l,n+k(τ) are given recursively by the formula:

dr+l,n+k(τ) =

bm−l+kτ
m−l+k −

l∑
i=k+1

a
(i)
n+k−idr+l,n+i(τ) +

l∑
i=k+r

bn+k−id
(n+k−i)
r+l,n+i (τ)

a
(k)
n

(6.3)

for k = l, l − 1, . . . , 1, 0.

In the sub-case r + l > m we have:

[
t ∗ τ r+l

]
=

[
0,
[(
θ − θ(j)

)
dr+l,n+j(τ) +

j−1∑

k=0

(
bj−kd

(j−k)
r+l,n+k(τ)− a

(k)
j−kdr+l,n+k(τ)

)]l
j=1

,
[ l∑

k=0

(
bj−kd

(j−k)
r+l,n+k(τ)− a

(k)
j−kdr+l,n+k(τ)

)]m
j=l+1

,

,
[ l∑

k=j−m

bj−kd
(j−k)
r+l,n+k(τ)−

l∑

k=0

a
(k)
j−kdr+l,n+k(τ)

]r+l−1

j=m+1
,

,
[
θ +

l∑

k=r+l−m

br+l−kd
(r+l−k)
r+l,n+k(τ)−

l∑

k=0

a
(k)
r+l−kdr+l,n+k(τ)

]
,

,
[
bj−r−lτ

j−r−l +
l∑

k=j−m

bj−kd
(j−k)
r+l,n+k(τ)−

l∑

k=0

a
(k)
j−kdr+l,n+k(τ)

]m+l

j=r+l+1
,

,
[
bj−r−lτ

j−r−l −

l∑

k=0

a
(k)
j−kdr+l,n+k(τ)

]n−1

j=m+l+1

]t
,

where the polynomials dr+l,n+k(τ) are given by (6.3). From the calculated

forms of Πt, we observe that

(i) The polynomials d∗,∗(τ) used in the description of Πt do not have

constant terms.

(ii) If we write Πt in the form Πt = (Iθ + N)τ 0 +
s∑

i=1

Aiτ
i, then the

matrix N vanishes.

6.1. Some consequences of exact formulas.

Proposition 6.1. Let (K, v) be a valuation field. Assume that φ and ψ are

Drinfeld modules, such that r := degτφ − degτψ > 0 and φt = θ +
n∑

i=1

aiτ
i,

ψt = θ +
m∑
j=1

bjτ
j. If the following conditions

(i) ψt has integer coefficients,

(ii) φt − anτ
n has integer coefficients,

(iii) v(an) < min

{
v
(
b1
)
, qiv

(
an−i

)
,
v
(
bm+1−i

)

qm−i
| i = 1, 2, . . . , m− 1

}
,
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hold true, then t−module Ext1τ (φ, ψ) has integer coefficients.

Proof. First we will show, that the condition (iii) implies that the polyno-

mials dr+l,n+k(τ) have integer coefficients. The proof will be carried out for

the case m > r. The other cases are similar. Fix l ∈ {0, 1, . . . , m − 1}. We

use the downward induction for k = l, l − 1, . . . , 1, 0.

If k = l, then dr+l,n+l(τ) =
bm

a
(l)
n

τm. Because v(an) <
v(bm)

qm
, then

v(bm) > qmv(an) > qlv(an) = v(a(l)n ),

so the polynomial dr+l,n+l(τ) has integer coefficients. Assume that the poly-

nomials

dr+l,n+l(τ), dr+l,n+l−1(τ), · · · , dr+l,n+k+1(τ)

have integer coefficients. We have

dr+l,n+k(τ) =

bm−l+kτ
m−l+k −

l∑
i=k+1

a
(i)
n+k−idr+l,n+i(τ) +

l∑
i=k+r

bn+k−id
(n+k−i)
r+l,n+i (τ)

a
(k)
n

=
bm−l+k

a
(k)
n

τm−l+k −
l∑

i=k+1

a
(i)
n+k−i

a
(k)
n

dr+l,n+i(τ) +
l∑

i=k+r

bn+k−i

a
(k)
n

d
(n+k−i)
r+l,n+i (τ).

From the inductive hypotheses the polynomials dr+l,n+i(τ) and d
(n+k−i)
r+l,n+i (τ)

have integer coefficients. Thus, it is enough to show that the valuations of

fractions
bm−l+k

a
(k)
n

,
a
(i)
n+k−i

a
(k)
n

,
bn+k−i

a
(k)
n

are positive. This follows from condition (iii). Hence the polynomials dr+l,n+k(τ)

have integer coefficients.

The claim follows now from the form of the matrix Πt of the t−module

Ext1τ (φ, ψ) by using conditions (i) and (ii). �

Proposition 6.2. Let φ and ψ be Drinfeld modules, such that r = degτφ−

degτψ > 0. Then we have:

degτ Ext
1
τ (φ, ψ) =

{
2m for m ≤ r

3m for m > r
.

Proof. Claim follows from the form of Πt in the corresponding cases. �
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Appendix

In this Appendix we give an exemplary implementation of the pseu-

docodes from Sections 4 and 5. This is done by means of Mathematica 13.2

[19]. We inserted a lot of comments in the program so that the reader can

easily follow it. We also compute two examples: first using Algorithm 4 and

the second using Algorithm 6.

(* functions used for getting proper formatting for q∧i *)(* functions used for getting proper formatting for q∧i *)(* functions used for getting proper formatting for q∧i *)

par[x_]:=RowBox[{“(”, x, “)”}]//DisplayForm

formatQ[p_]:=p/.(q∧x_->par[x])/.(q->par[1])

(* degree of τ polynomial *)(* degree of τ polynomial *)(* degree of τ polynomial *)

deg[p_]:=Max[Exponent[p, τ ], 0]

(* degree of τ polynomial with matrix coefficients *)(* degree of τ polynomial with matrix coefficients *)(* degree of τ polynomial with matrix coefficients *)

degM[m_]:=Max[Exponent[#, τ ]&/@m];

(* functions used for computing product of matrices x, y of τ polynomials *)(* functions used for computing product of matrices x, y of τ polynomials *)(* functions used for computing product of matrices x, y of τ polynomials *)

twist[c_, n_]:=Table[c∧(q∧(i− 1)), {i, n}]

toPoly[p_]:=FromDigits[Reverse[p], τ ]

coefficientList[p_]:=If[Exponent[p, τ ]>=0,CoefficientList[p, τ ], {0}]

pMult[x_, y_]:=Total[toPoly/@(MapIndexed[PadLeft[twist[#1, deg[x

] + 1] ∗ coefficientList[x],#2 + deg[x]]&,CoefficientList[y, τ ]]/.0∧u_-> 0)];

tMult[x_, y_]:=Expand[Inner[pMult, x, y,Plus]];

(* Ei,j matrix with dimensions n×m *)

elementMatrix[i_, j_, n_,m_]:=Module[{x}, x = Table[0, {p, n}, {r,m}]; x[[i]][[j]] = 1; x];

(* array of τ polynomial coefficients of each element of v *)(* array of τ polynomial coefficients of each element of v *)(* array of τ polynomial coefficients of each element of v *)

coefficientForm[v_, degrees_]:=Flatten[MapIndexed[Table[Coefficient[#1, τ, k],

{k, 0,Extract[degrees,#2]− 1}]&, v, {2}], 2];

(*φ, ψ − t−modules*)(*φ, ψ − t−modules*)(*φ, ψ − t−modules*)

(* reduction of degrees in v to degrees at most r − 1, using inverse matrix s *)(* reduction of degrees in v to degrees at most r − 1, using inverse matrix s *)(* reduction of degrees in v to degrees at most r − 1, using inverse matrix s *)

reduce1[v_, r_, φ_, ψ_, s_]:=Module[{i, j, n,m, rp, a, g, vp},

vp = v;

n = Dimensions[v][[1]];

m = Dimensions[v][[2]];

For[i = 1, i<=n, i++,

For[j = 1, j<=m, j++,

rp = deg[vp[[i]][[j]]];

While[rp>=r,

a = Coefficient[vp[[i]][[j]], τ, rp];

g = tMult[elementMatrix[i, j, n,m] ∗ a ∗ τ∧(rp− r), s];

g = tMult[g, φ]− tMult[ψ, g];
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vp = PowerExpand[vp− g];

rp = rp− 1;]]]; vp];

(* computing extension Ext1(φ, ψ) using inverse matrix *)(* computing extension Ext1(φ, ψ) using inverse matrix *)(* computing extension Ext1(φ, ψ) using inverse matrix *)

extInverse[φ_, ψ_]:=Module[{n,m, r, s, v, degrees, c},

m = Dimensions[φ][[1]];

n = Dimensions[ψ][[2]];

r = degM[φ];

degrees = Table[r, {i, n}, {j,m}];

(* finding A_n∧ − 1 *)(* finding A_n∧ − 1 *)(* finding A_n∧ − 1 *)

s = Inverse[Map[Coefficient[#, τ, r]&, φ, {2}]];

(* creating basis for extension, where v is a list of basis elements *)(* creating basis for extension, where v is a list of basis elements *)(* creating basis for extension, where v is a list of basis elements *)

v = Flatten[Table[elementMatrix[i, j, n,m] ∗ c ∗ τ∧(k − 1), {i, n}, {j,m}, {k, r}], 2];

v = tMult[ψ,#]&/@v;

v = reduce1[#, r, φ, ψ, s]&/@v;

v = coefficientForm[#, degrees]&/@v;

(* expand powers and substitute c for τ with appropriate power *)(* expand powers and substitute c for τ with appropriate power *)(* expand powers and substitute c for τ with appropriate power *)

v = PowerExpand[v//.(x_ + y_)∧(q∧z_)->x∧(q∧z) + y∧(q∧z)//.(x_ + y_)∧q->x∧q + y∧q];

v = v//.(x_ + y_) ∗ z_->x ∗ z + y ∗ z;

v = v/.c∧(q∧x_)->τ∧x/.c∧(q)->τ/.c->1;

v//Transpose];

(*example − Ext1(φ, ψ)*)(*example − Ext1(φ, ψ)*)(*example− Ext1(φ, ψ)*)

ψ = {{θ + τ∧2, 0}, {b, θ + τ}};

φ = {{θ, τ∧3}, {τ∧3 + a, θ}};

φ = {{θ, τ∧3}, {τ∧3 + a, θ}};

ψ//MatrixForm

φ//MatrixForm

formatQ/@extInverse[φ, ψ]//MatrixForm(
θ + τ 2 0
b θ + τ

)

(
θ τ 3

a+ τ 3 θ

)
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θ −aτ 2 0 0 0 0 0 0 0 0 0 0
0 θ −a(1)τ 2 0 0 θτ 2 − θ(1)τ 2 0 0 0 0 0 0
τ 2 0 θ + τ 6 0 τ 4 0 0 0 0 0 0 0
0 0 0 θ 0 0 0 0 0 0 0 0
0 0 θτ 2 − θ(1)τ 2 0 θ 0 0 0 0 0 0 0
0 τ 4 0 τ 2 0 θ 0 0 0 0 0 0
b 0 bτ 4 0 bτ 2 0 θ 0 −aτ 0 0 0
0 b 0 0 0 bτ 2 τ θ 0 0 0 τ 2

0 0 b 0 0 0 0 τ θ 0 0 0
0 bτ 2 0 b 0 0 0 0 0 θ 0 0
0 0 bτ 2 0 b 0 0 0 τ 2 τ θ 0
0 0 0 0 0 b 0 0 0 0 τ θ




(*φ, ψ − t−modules*)(*φ, ψ − t−modules*)(*φ, ψ − t−modules*)

(* reduction of degrees in v *)(* reduction of degrees in v *)(* reduction of degrees in v *)

reduce2[v_, φ_, ψ_]:=Module[{i, j, n,m, rp, r, a, g, vp},

vp = v; n = Dimensions[v][[1]]; m = Dimensions[v][[2]];

For[i = 1, i<=n, i++,

For[j = m, j>=1, j–,

rp = deg[vp[[i]][[j]]]; r = deg[φ[[j]][[j]]];

While[rp>=r,

a = Coefficient[vp[[i]][[j]], τ, rp]/(Coefficient[φ[[j]][[j]], τ, r]∧(q∧(rp− r)));

g = elementMatrix[i, j, n,m] ∗ a ∗ τ∧(rp− r);

g = tMult[g, φ]− tMult[ψ, g];

vp = PowerExpand[vp− g];

rp = rp− 1;]]]; vp];

(* computing extension Ext1(φ, ψ) for lower triangular t−modules *)(* computing extension Ext1(φ, ψ) for lower triangular t−modules *)(* computing extension Ext1(φ, ψ) for lower triangular t−modules *)

extTriangular[φ_, ψ_]:=Module[{n,m, v, degrees, x, y, z, c},

m = Dimensions[φ][[1]];

n = Dimensions[ψ][[2]];

degrees = Table[deg[φ[[j]][[j]]], {i, n}, {j,m}];

(* creating basis for extension, where v is a list of basis elements *)(* creating basis for extension, where v is a list of basis elements *)(* creating basis for extension, where v is a list of basis elements *)

v = Flatten[Table[

Table[elementMatrix[i, j, n,m] ∗ c ∗ τ∧(k − 1),

{k, deg[φ[[j]][[j]]]}], {i, n}, {j,m}], 2];

v = tMult[ψ,#]&/@v;

v = reduce2[#, φ, ψ]&/@v;

v = coefficientForm[#, degrees]&/@v;

(* expand powers and substitute c for τ with appropriate power *)(* expand powers and substitute c for τ with appropriate power *)(* expand powers and substitute c for τ with appropriate power *)

v = PowerExpand[v//.(x_ + y_)∧(q∧z_)->x∧(q∧z) + y∧(q∧z)//.(x_ + y_)∧q->x∧q + y∧q];

v = v//.(x_ + y_) ∗ z_->x ∗ z + y ∗ z;
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v = v/.c∧(q∧x_)->τ∧x/.c∧(q)->τ/.c->1;

v//Transpose];

(* example − Ext1(φ, ψ), char k 6= 3 *)(* example− Ext1(φ, ψ), char k 6= 3 *)(* example− Ext1(φ, ψ), char k 6= 3 *)

ψ = {{θ + τ, 0}, {1, θ + τ}};

φ = {{θ + τ∧3, 0}, {1 + a ∗ τ + τ∧2, θ + 3 ∗ τ∧2}};

ψ//MatrixForm

φ//MatrixForm

formatQ/@extTriangular[φ, ψ]//MatrixForm
(
θ + τ 0
1 θ + τ

)

(
θ + τ 3 0

1 + aτ + τ 2 θ + 3τ 2

)




θ 0 0 0 − τ
3

0 0 0 0 0
τ θ τ 2 0 −aτ

3
0 0 0 0 0

0 τ θ 0 − τ
3

0 0 0 0 0
0 0 0 θ 0 0 0 0 0 0
0 0 0 τ θ + 3−(1)τ 2 0 0 0 0 0
1 0 τ 0 0 θ 0 0 0 − τ

3
0 1 0 0 0 τ θ τ 2 0 −aτ

3
0 0 1 0 0 0 τ θ 0 − τ

3
0 0 0 1 τ

3
0 0 0 θ 0

0 0 0 0 1 0 0 0 τ θ + 3−(1)τ 2




(* recall that (n) := qn *)
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